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Abstract Marine sulfate aerosols in the Southern Ocean are critical to the global radiation balance, yet the
sources of sulfate and their seasonal variations are unclear. We separately sampled marine and ambient
aerosols at Baring Head, New Zealand for 1 year using two collectors and evaluated the sources of sulfate in
coarse (1–10 μm) and fine (0.05–1 μm) aerosols using sulfur isotopes (δ34S). In both collectors, sea-salt sulfate
(SO4

2�
SS) mainly existed in coarse aerosols and nonsea-salt sulfate (SO4

2�
NSS) dominated the sulfate in

fine aerosols, although some summer SO4
2�

NSS appeared in coarse particles due to aerosol coagulation.
SO4

2�
NSS in the marine aerosols was mainly (88–100%) from marine biogenic dimethylsulfide (DMS)

emission, while the SO4
2�

NSS in the ambient aerosols was a combination of DMS (73–79%) and SO2 emissions
from shipping activities (~21–27%). The seasonal variations of SO4

2�
NSS concentrations inferred from the

δ34S values in both collectors were mainly controlled by the DMS flux.

Plain Language Summary Marine sulfate aerosols are critical to the global radiation balance
through directly scattering sunlight or forming clouds; however, their feedback effects are poorly
quantified because their sources and size distributions are unclear. We investigated the origins and size
distributions of sulfate aerosols from the Southern Ocean as well as the ambient environment at Baring Head,
New Zealand. We found that the sulfate in coarse (>1 um) aerosols was dominated by sea-salt sulfate; while
the fine aerosol (<1 um) sulfate, which could act as cloud condensation nuclei, was mostly formed via
atmospheric oxidation of sulfur-bearing gases. The origin of the secondary sulfate was then identified using
sulfur isotopic analysis: Dimethylsulfide emitted by phytoplankton contributed over 90% of the secondary
sulfate on the Southern Ocean; it also contributed ~73–79% of secondary sulfate aerosols in the ambient air
at Baring Head, while the remainder was from anthropogenic sulfur emissions. Our work suggest that marine
biological activity is an important factor that controls the amount of sulfate aerosols in remote marine
atmosphere, which is of great importance to global climate models.

1. Introduction

Sulfate is one of the major inorganic components in aerosols and is essential to aerosol nucleation and accu-
mulation processes (Andronache et al., 1997; Kulmala et al., 2000), which greatly affect Earth’s radiation bud-
get. However, the impact of sulfate aerosols to the radiation budget is still poorly quantified (IPCC, 2007),
partly because the sources and fluxes of sulfate show strong spatial and seasonal variations. In the marine
boundary layer, sulfate aerosols consist of primary and secondary sulfate. Primary sulfate, that is, sea-salt sul-
fate (SO4

2�
SS) is formed via sea spray and air bubble bursting at the ocean surface (Lewis & Schwartz, 2004;

O’Dowd et al., 2007); its size distribution and flux are controlled by wind speed, wave height, and other
meteorological conditions (Gong, 2003; Lewis & Schwartz, 2004; Van Eijk et al., 2011). Nonsea-salt sulfate
(SO4

2�
NSS), also called secondary sulfate, is formed via atmospheric oxidation of S, the sources of which are

(1) dimethylsulfide (SO4
2�

DMS) emitted by marine phytoplankton (Barnes et al., 2006); (2) natural terrestrial
S emission (SO4

2�
nat), including sulfate from SO2 emitted by volcanic and terrestrial biological activities; or

(3) anthropogenic S emissions (SO4
2�

anth). In the midlatitudes of the Southern Ocean (~35–45°S), SO4
2�

DMS

is thought to play a critical role in the cloud physics and climate by controlling the number of cloud conden-
sation nuclei (CCN), resulting in strong reflection of solar radiation in the summer when the DMS flux is high
(Ayers & Gras, 1991; Boers et al., 1994; Korhonen et al., 2008; McCoy et al., 2015). However, the sources, size
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distributions, and seasonal variations of the Southern Ocean sulfate are not well understood, which limits our
ability to predict its response to the changing climate.

Previous studies have investigated the sources and size distributions of marine sulfate aerosols in several
locations (Calhoun & Bates, 1989; Calhoun et al., 1991; Faloona, 2009; Ghahremaninezhad et al., 2016;
Norman et al., 1999; Novák et al., 2001; Rempillo et al., 2011; Seguin et al., 2011); however, several questions
remain unanswered. First, substantial amounts of SO4

2�
NSS had been observed in the coarse aerosols

(0.9–16 μm) sampled at Baring Head originating from the biologically productive subtropical frontal region
of the Chatham Rise (Sievering et al., 2004), suggesting SO4

2�
NSS was mainly formed on coarse sea-salt par-

ticles. This is in contrast with observations in the Northern Hemisphere (Ghahremaninezhad et al., 2016;
Norman et al., 1999; Rempillo et al., 2011; Seguin et al., 2011) and modeling results (Alexander et al., 2005),
all of which suggested SO4

2�
NSS should mainly distributed in the fine particles (<0.95 μm). Second, the con-

tribution of anthropogenic emission to the Southern Ocean sulfate is uncertain. Capaldo et al. (1999) sug-
gested that international shipping emission, which is the main anthropogenic sulfur source in midlatitude
Southern Ocean (~40°S), contributes to ~5% to 20% of total sulfate, while McCoy et al. (2015) showed a
higher anthropogenic contribution of 20%–35% at 40°S. Third, the observed seasonal variations of
Southern Ocean sulfate (e.g., McCoy et al., 2015; Udisti et al., 2012) were unexplained and difficult to predict
because the variation of each sulfate source was unknown.

Geochemical and sulfur isotopic analyses are useful tools in determining the sources of sulfate. Cation and
anion analyses are useful in partitioning between SO4

2�
SS and SO4

2�
NSS, and changes in the sulfur isotopic

composition (δ34S) can help in differentiating SO4
2� sources: δ34S of SO4

2�
SS (δ

34SSS) is a constant +21‰
(Rees et al., 1978), δ34S values of DMS range between +15‰ and +19‰ (Amrani et al., 2013; Krouse &
Grinenko, 1991; Oduro et al., 2012), while most anthropogenic and terrestrial sulfates display much
lower δ34S values between �5‰ and +10‰ (Calhoun et al., 1991; Krouse & Grinenko, 1991; McArdle
et al., 1998; Sakai et al., 1982; Zhu et al., 2016). In this work, a full-year sampling campaign was conducted
to collect size-segregated aerosols derived from the marine sector (subtropical frontal region and the
Southern Ocean) and all sectors (ambient environment) at Baring Head, New Zealand (41.4°S, 174.9°E,
Figure 1). Geochemical and sulfur isotopic analyses were used to investigate S sources and their
seasonal variations.

2. Method

The aerosol sampling campaign spanned from 30 June 2015 to 11 August 2016 and sampled both marine
and ambient air. Two high-volume samplers equipped with Cascade Impactors were set up on a 15 m tower
at Baring Head, New Zealand (Figure 1),where the metrological conditions were measured, to collect coarse
(1–10 μm) and fine aerosols (0.05–1.0 μm) at a flow rate of ~1 m3/min. Cellulose filters were used to minimize
ion contamination (especially Na+ and SO4

2�), which were tested using eight blanks and resulted in
[Na+] < 0.6% of average [Na+] in the field samples (e.g., <0.05 nmol/m3). One of the collectors (marine col-
lector, set on top of the tower) was configured to sample oceanic air masses by only collecting when the aver-
age southerly (onshore) wind speed was above 5 m/s for at least 30 min. Filters on this collector were
replaced after 100 to 150 hr of collection to acquire enough sample (every 2 to 6 weeks). The ambient collec-
tor sampled air mass regardless of the wind direction, and filters were replaced every 7 days (154 hr). Previous
studies (Dorling et al., 1992; Steinkamp et al., 2017) confirmed the origins of the collected aerosols using clus-
ter analysis (Figure 1) showing aerosols in the marine collector originated from the oceanic sector of the sub-
tropical front/Chatham Rise (red shaded area), while the aerosols in the ambient collector were from both the
ocean and the New Zealand mainland (blue lines). Meantime, a wave buoy off the coast was used to measure
the wave peak height. The filters were carefully sealed and shipped to Purdue Stable Isotope Laboratory,
where standard methods were used to analyze cations (inductively coupled plasma optical emission spectro-
metry, ICP-OES), anions (Ion Chromatography), and sulfur isotopic compositions of sulfate (isotope-ratio mass
spectrometry, see supporting information for detailed description of analytical methods and data). The con-
centrations of SO4

2�
SS were calculated using the seawater [SO4

2�Na+] molar ratio (0.058) and the measured
Na concentrations: [SO4

2�
SS] = 0.058*[Na+] (Keene et al., 2007). The residual sulfate was considered SO4

2�
NSS.

This assumes sodium is a conservative element, seawater is its sole source, and it is insensitive to chemical or
biological loss (Keene et al., 1986).
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3. Results and Discussions
3.1. Distribution of Sea-Salt and Nonsea-Salt Sulfate in Coarse and Fine Aerosols

Sulfate in coarse aerosols was mainly SO4
2�

SS, and SO4
2�

NSS was found primarily in the fine aerosol fraction,
which was in contrast with a previous study at Baring Head (Sievering et al., 2004). Coarse aerosol sulfate con-
centrations in the two collectors were similar (8.8 ± 1.9 nmol/m3 in marine collector and 8.1 ± 3.8 nmol/m3 in
ambient collector), which is remarkably close to a previous study at Baring Head that averaged 8.3 nmol/m3

(Sievering et al., 2004). SO4
2�

SS accounted for 88 ± 5% of the coarse aerosol sulfate (Figures 2a and 2b), but
the contribution of SO4

2�
NSS in the course mode slightly increased during the summer (discussed below). In

contrast, fine particle sulfate concentrations were lower, (averaging 1.7 nmol/m3 in marine collector and

Figure 1. Sampling location and result of air parcel 4-day back trajectory of air mass arriving at Baring Head. Blue lines and
the numbers above indicate the mean path and percentage of air mass from each cluster; red shaded area indicates the
envelope of all trajectories during southerly wind, modified from Steinkamp et al. (2017).
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2.7 nmol/m3 in ambient collector), and SO4
2�

SS accounted for only ~16 ± 1% of total sulfate, the remaining
84 ± 1% was SO4

2�
NSS. This general SO4

2�
SS distribution pattern was similar to the distribution previously

observed at Baring Head by Sievering et al. (2004), but in that study only 53% of coarse aerosol sulfate was
attributed to SO4

2�
SS compared to this study’s 88%. They also suggested coarse aerosol sulfate accounted

for 81% of total SO4
2�

NSS, while our results showed a much lower contribution of ~24–36%.

The discrepancy in SO4
2�

NSS distribution could be attributed to either (1) differences in sampling conditions
or (2) differences in SO4

2�
SS estimation. Sievering et al. (2004) suggested that under clear-sky conditions, pH

buffering by excess calcium provided from coccolithophores fragments could enhance the effectiveness of
ozone-mediated oxidation in sea-salt aerosol droplets, leading to greater coarse mode SO4

2�
NSS. In this work,

aerosols from both clear and cloudy conditions were sampled; therefore, this mechanism was likely less
important and results in lower coarse mode SO4

2�
NSS. Alternatively, the discrepancy may be due to our

use of aerosol [Na+] to estimate SO4
2�

SS rather than [Mg2+] used by Sievering et al. (2004). Sodium is themost
widely used conservative tracer of sea salt (Lin et al., 2017; Norman et al., 1999; Udisti et al., 2016) because (1)
it has a high concentration in the seawater, (2) nonmarine sodium inputs are trivial in most places (McInnes
et al., 1994), and (3) it is insensitive to secondary alterations. Sievering et al. (2004) used [Mg2+] to calculate

Figure 2. (a–d) SO4
2�

SS (black) and SO4
2�

NSS (red) concentrations in coarse and fine aerosols from ambient and marine
collectors; blue lines in Figures 2a and 2c are averaged (to fit the marine collector sampling window) total sulfate
concentrations. (e) Wind speed, wave height, and coarse SO4

2�
SS concentrations in ambient collector.

10.1002/2018GL077353Geophysical Research Letters

LI ET AL. 3720



SO4
2�

SS fraction because of abnormally high [Na+Cl�] and [Na+Mg2+] ratios in their aerosols that they attrib-
uted to either contamination by filter blanks or possible contributions of sodium in soil. Likewise, [Mg2+] has
been used to estimate SO4

2�
SS in aerosols collected at Cape Grim, Tasmania, and La Jolla, California because

sodium from either filter blanks or soil was believed to be significant (Cainey et al., 1999; Hill-Falkenthal et al.,
2012; Priyadarshi et al., 2012). The cellulose filters used in this study had a very low Na+ blank relative to
typical glass fiber filters (Dams et al., 1972), and Southern Ocean derived air masses should have minimal
terrestrial influence at Baring Head. Further, the coarse aerosol [Mg2+Na+] in both of our collectors averaged
at 0.111 ± 0.005, much higher than the 0.05 ratio determined by Sievering et al. (2004) and very close to the
seawater ratio of 0.11 (Keene et al., 2007), indicating minimal contribution of sodium from either soil or filter
blank. Furthermore, the low [Mg2+Na+] ratio observed by Sievering et al. (2004) may be a consequence of
biased [Mg2+] measurements. A recent study has observed that sea-spray Mg2+ and Ca2+ form complexes
with lipids, fatty acids, and saccharides (Jayarathne et al., 2016) during sea-salt aerosol formation, potentially
biasing [Mg2+] analyzed by ion chromatography (Sievering et al., 2004). Using ICP-OES to analyze [Mg2+] does
not require it to be in ionic form, so could be a more accurate measure of [Mg2+Na+] in the sea-salt aerosols
given the possibility of complexation and provides confidence in the accuracy of the SO4

2�
SS presented here.

The size distribution patterns of SO4
2�

SS and SO4
2�

NSS agrees with other field observations and atmospheric
modeling results, indicating SO4

2�
NSS is the main sulfur source in CCN. Observations in the North Atlantic,

Arctic, and Pacific Ocean have suggested similar distribution patterns, of which>90% of SO4
2�

SS was distrib-
uted in coarse aerosols and> 60% of SO4

2�
NSS was in fine aerosols (Ghahremaninezhad et al., 2016; Murphy

et al., 1998; Norman et al., 1999; Rempillo et al., 2011; Seguin et al., 2011). Therefore, we suggest in the
Southern Ocean SO4

2�
NSS was also the main sulfate source of CCN, since CCN are usually <0.2 μm

(Hudson & Noble, 2006). Additionally, we noticed coarse aerosol SO4
2�

NSS was observed when the total
SO4

2�
NSS concentrations (SO4

2�
NSS-coarse + SO4

2�
NSS-fine) exceeded 2.0 nmol/m3. This indicates higher

SO4
2�

NSS concentrations helped coagulation forms larger SO4
2�

NSS particles. Further experiments and field
sample analysis should take place to quantify the relationship between SO4

2�
NSS concentration and their

size distribution.

The variations in SO4
2�

SS concentrations were attributed to variations in wind speed and wave heights at
Baring Head. Early studies have suggested that the mass concentration of sea-salt aerosols is positively cor-
related to wind speed (O’Dowd et al., 1997; O’Dowd & Smith, 1993); however, recent studies had suggested
other physical conditions, such as whitecap coverage and wave peak height on the coast are also important
(Clarke et al., 2006; Lewis & Schwartz, 2004; Mårtensson et al., 2003; O’Dowd et al., 2007). Our observed SO4

2�
SS

concentrations only showed a weak correlation with the average wind speed (P > 0.05, R2 = 0.03, Figure 2e)
similar to other field studies (Ghahremaninezhad et al., 2016; Jaeglé et al., 2011; Lewis & Schwartz, 2004;
Rempillo et al., 2011; Seguin et al., 2011). In contrast, maximums in wave peak heights usually corresponded
to high SO4

2�
SS concentrations at Baring Head (Figure 2e), supporting the hypothesis that breaking waves

increase sea-salt aerosol formation near the coast (Jensen et al., 1997; Monahan et al., 1986; Van Eijk et al.,
2011). Therefore, we suggest that wave height was more important than wind speed, under lowmedian wind
speeds (9.9 ± 3.9 m/s), in generating sea-salt aerosols at Baring Head during the study period.

3.2. Sources and Seasonal Variations of SO4
2�

NSS in the Marine Collector

The sulfur isotopic compositions of sulfate also indicated a mixture of SO4
2�

SS and SO4
2�

NSS. The δ
34S values

of total sulfate (SO4
2�

SS + SO4
2�

NSS) were interpreted using a two-end-member isotope mixing model
(Figure 3a): SO4

2�
SS with δ

34S value that is the same (+21‰) as seawater (Rees et al., 1978) and SO4
2�

NSS with
lower δ34S value(s). Most coarse aerosol sulfate had δ34S values near the seawater end-member, indicating
the coarse aerosol sulfate was predominately composed of SO4

2�
SS, which supports our SO4

2�
SS estimates

using [Na+]. In contrast, the fine aerosol had lower δ34S values (+11‰ to +21‰), suggesting a higher propor-
tion of SO4

2�
NSS relative to the coarse aerosols.

The δ34S values of SO4
2�

NSS (δ
34SNSS) can give insight into the origin of SO4

2�
NSS sources. The δ

34SNSS values
were calculated using δ34SNSS = (δ34Sbulk � (1 � SO4

2�
NSS%)* + 21‰)/SO4

2�
NSS%, where SO4

2�
NSS% is the

fraction of SO4
2�

NSS (using [Na
+]), the +21‰ is the δ34S value of seawater sulfate, and δ34Sbulk is the δ

34S value
of the total aerosol sulfate. The calculated δ34SNSS values ranged from +6‰ to +19‰ (Figure 3). δ34SNSS values
in the marine collector range from +15‰ to +19‰ (Figure 3b), which is the same range previously observed
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in δ34SDMS (Krouse & Grinenko, 1991; Patris et al., 2002; Sanusi et al.,
2006; Wadleigh, 2004). This indicates that SO4

2�
DMS was the dominant

source of SO4
2�

NSS in the marine collector. The ambient aerosol δ34SNSS
values were as low as +6‰, which cannot be explained by oxidation of
DMS, and points to nonmarine sulfur sources. The main anthropogenic
S sources in the region are international and local shipping activity
(Capaldo et al., 1999; McCoy et al., 2015) and the δ34S value of sulfur
derived from ships has been estimated to be +3‰ (Patris et al., 2000;
Rempillo et al., 2011). Likewise, the δ34S values of sulfate derived
from terrestrial sulfur sources near Baring Head also have been esti-
mated to be +3‰ (discussed below). Thus, the range of Baring Head
SO4

2�
NSS values is interpreted as a second mixture of SO4

2�
DMS

(Calhoun et al., 1991; Krouse & Grinenko, 1991; Patris et al., 2002;
Sanusi et al., 2006) and SO4

2�
anth whose fractions (fDMS, fanth) can be

quantified using a simple two end-member isotope mixing model:
δ34SNSS = fDMS*δ

34SDMS + fanth*δ
34Santh. Using this mixing model, we

can first estimate the fDMS and fanth (given in %) in the marine collector.

The high δ34SNSS values (Figure 2b) of marine SO4
2�

NSS indicate that it
was primarily (88–100%) SO4

2�
DMS and only 0–12% was SO4

2�
anth. To

estimate the upper limit of fanth, we assume a constant δ34SDMS end-
member of +19‰ (Wadleigh, 2004), and the δ34Santh end-member
was from ship emissions with δ34S = +3‰. The variation of δ34SNSS
can be solely attributed to changing in fanth, and the calculated upper
limit of fanth is ~12%. This SO4

2�
anth contribution to SO4

2�
NSS is much

lower than the 20–35% estimated by McCoy et al. (2015) but in agree-
ment with the 5–20% estimated by Capaldo et al. (1999). However, this
calculation assumed the δ34SDMS was a constant +19‰ and ignored
the observed +15‰ to +19‰ range in other studies (Krouse &
Grinenko, 1991; Patris et al., 2002; Sanusi et al., 2006; Wadleigh, 2004).
This 4‰ variation in δ34SDMS values is thought to be caused by a com-
bination of (1) variation of isotopic fractionation during SO2 oxidized to
sulfate (δ34Ssulfate� δ34SSO2, Harris et al., 2012, 2013) and (2) the δ34S of
DMS gas could slightly vary (Amrani et al., 2013). If we consider the
δ34SDMS variation, then the contribution of anthropogenic S in marine
aerosols could be as low as zero at Baring Head. This 0–12% anthropo-
genic S contribution to the SO4

2�
NSS budget is significantly lower than

the estimates of 30–70% in the Northern Atlantic Ocean and other
Pacific Ocean sites (Capaldo et al., 1999; Patris et al., 2000; Yang et al.,
2017). We suggest that this lower anthropogenic sulfate fraction in
SO4

2�
NSS at Baring Head is due to significantly lower sulfur emission

in the Southern Hemisphere (IEA, 2014), fewer shipping routes in the
Southern Hemisphere, thus minimal influence of ship sulfur emissions

(Paxian et al., 2010), and poor interhemispheric mixing of sulfate that minimizes the influence of the
Northern Hemisphere sulfur emissions at Baring Head (Capaldo et al., 1999).

The observed seasonal variation of SO4
2�

NSS in the marine collector (Figure 2d), which was primarily from
DMS emissions, must be controlled by seasonal changes in the DMS flux. Baring Head’s average summer
SO4

2�
DMS concentration was ~2.7 nmol/m3, while winter concentrations averaged at 0.6 nmol/m3

(Figure 2d), similar to the SO4
2�

DMS concentrations observed in Arctic, Southern Pacific, and Northern
Atlantic Ocean (Allen et al., 1997; Ghahremaninezhad et al., 2016; Huang et al., 2017; Quinn et al., 2009;
Rempillo et al., 2011; Seguin et al., 2011). The observed average summer SO4

2�
DMS concentration was ~4.5

times higher than the winter SO4
2�

DMS, which agrees with the recent observation of dissolved sea-water
DMS concentration by Lana et al. (2011) who showed at least a fourfold higher concentration of dissolved

Figure 3. (a) δ34S distribution of all samples, showing a mixing of SO4
2�

SS and
SO4

2�
NSS; (b) the δ

34SNSS values of ambient and marine fine sulfate; horizontal
bars indicate the δ34S values of each end-member; and (c) estimated anthro-
pogenic and DMS contribution to SO4

2�
NSS in ambient fine sulfate.
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DMS in the austral summer compared to winter. In addition, Law et al. (2017) discussed evidence suggesting
this seasonal variation presented by Lana et al. (2011) also occurred in the waters offshore of New Zealand.
Therefore, since SO4

2�
DMS was the main source of fine sulfate particles, the seasonal variation of SO4

2�
DMS

could explain the 300% increase of CCN in the summer observed by Ayers and Gras (1991).

3.3. Sources and Seasonal Variations of SO4
2�

NSS in the Ambient Collector

The ambient aerosol δ34SNSS values were lower than the marine aerosol δ34SNSS and displayed a distinct sea-
sonal trend, indicating changing contribution of anthropogenic sulfur over the year (Figure 3b). The ambient
aerosol δ34SNSS values (+6‰ to +18‰) were close to those of marine aerosols during the summer, suggest-
ing the SO4

2�
NSS was also dominated by DMS during the summer months. In contrast, the δ34SNSS values in

the winter were significantly lower (Figure 3b) than in the marine aerosols, suggesting SO4
2�

nat and/or
SO4

2�
anth input (e.g., Calhoun et al., 1991; Ghahremaninezhad et al., 2016; Patris et al., 2000; Rempillo

et al., 2011). Potential terrestrial sulfur sources include terrestrial biogenic emissions, volcanic emissions,
and anthropogenic emissions. Terrestrial biogenic sulfur should be a minor contributor because the esti-
mated biogenic sulfur flux (<1 × 105 mol/day) in New Zealand (Bates et al., 1992) is small compared to
1 × 106 mol/day anthropogenic emission from Wellington, which is adjacent to the Baring Head site
(Ministry of the Environment, 2004). The volcanic activity should also be minor at Baring Head since the near-
est volcano and geothermally active regions with H2S emission are ~300 km away, and there was no signifi-
cant volcanic activity during our sampling period (GeoNet volcanic emission database). Therefore, SO4

2�
nat is

likely small, and SO4
2�

anth was likely the main nonmarine sulfur sources of SO4
2�

NSS in the ambient collector.
Eighty-two percent of anthropogenic sulfur emissions in the Wellington region were from commercial ship-
ping (Ministry of the Environment, 2004) that uses low-grade fuel oil. Early study showed that the δ34S values
of fuel oil center around 5‰ (Nielsen, 1974); recent measurements of ship emissions also have δ34S value of
+3‰ ± 3‰ (Patris et al., 2000; Rempillo et al., 2011). Other anthropogenic sources, such as coal burning and
industrial fossil fuel combustions, also showed δ34S values of +3‰ ± 3‰ (e.g., Górka et al., 2017; Proemse &
Mayer, 2012). Rainwater sulfate collected at Gracefield, a semi-industrial district ~25 km inland from Baring
Head and Wellington, had δ34S values of ~ +3 ± 5‰ (Mizutani & Rafter, 1969), which was consistent with
the end-members. Thus, the ambient aerosol δ34Santh end-member was estimated to be ~ +3‰ and the
δ34SNSS in the ambient collector can be again interpreted as a mixing between SO4

2�
anth and SO4

2�
DMS using

same isotope mixing model (above).

The fanth values variedwithin and by season: ~40–60% in thewinter, ~20–40% in the spring and fall, and 0–20%
in the summer. The SO4

2�
anth concentrations (fanth*[SO4

2�
NSS]) range from 0 to 2.5 nmol/m3, with an annual

average of 0.6 nmol/m3, accounted for 27% of total SO4
2�

NSS. Then, assuming the SO4
2�

NSS in the marine
collector was purely derived from DMS, the δ34SNSS in the marine collector can be used as the δ34SDMS in
the equation. Under this situation, the fanth values were ~40–50% in the winter, ~5–20% in the spring and fall,
and 0–15% in the summer (Figure 3c). The annual average fanth was 21%. Therefore, we suggest the SO4

2�
anth

accounted for 21–27% of total SO4
2�

NSS at Baring Head. Davy (2007) and Davy et al. (2008, 2012) had also
observed similar SO4

2�
NSS concentrations and seasonal variations at Lower Hutt, a coastal town ~20 km from

Baring Head, but the contribution of SO4
2�

DMSwas unexamined. We suggest their SO4
2�

NSS sources were simi-
lar to our results: SO4

2�
DMS contributed >70% of total SO4

2�
NSS, and SO4

2�
anth accounted for the rest.

The anthropogenic sulfate contributions at Baring Head were significantly lower than the Northern
Hemisphere marine boundary layer. The 21–27% anthropogenic contribution wasmuch lower thanmost stu-
dies in the Northern Hemisphere coastal areas where 30% to >90% SO4

2�
NSS was anthropogenic

(Ghahremaninezhad et al., 2016; Seguin et al., 2011; Xu & Gao, 2015) but only slightly higher than remote
Midway Island (20%) in the northern Pacific Ocean (Savoie & Prospero, 1989). Local sulfur emission at
Midway Island is minor (IEA, 2014), thus SO4

2�
anth should represent the sulfate background in the

Northern Hemisphere. In contrast, Baring Head is ~20 km from Wellington that has significant SO2 emission,
and our data suggest this is the major, if not sole, SO4

2�
anth source at Baring Head. This means the back-

ground SO4
2�

anth level near the Southern Ocean must be very low, in agreement with our observation from
the marine collector and the modeled results in Capaldo et al. (1999). Future atmospheric modeling work
incorporated with sulfur isotopic module could potentially distinguish the Southern Hemisphere background
SO4

2�
anth from SO4

2�
anth emissions from Wellington.
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SO4
2�

DMS collected in the ambient aerosols showed similar seasonal trend as the marine collector, while the
anthropogenic sulfate displayed little seasonal variation (Figure 3c). Sulfate source apportionment deter-
mined using sulfur isotopes allows us to examine the seasonal variations of both DMS and anthropogenic-
derived sulfate. Similar to the SO4

2� from the marine collector, the ambient SO4
2�

DMS shows lower flux in
the winter and higher flux in the summer but with a more significant variation (0.5 to 4 nmol/m3) throughout
the year. This is because the samples were collected weekly, so they would better capture the variation of
DMS oxidation at a finer time scale. If we average the SO4

2�
NSS concentration in the ambient collector to

the same sampling window as the marine collector, a similar seasonal trend was observed. Meantime, the
anthropogenic flux ranged from near zero to ~2.5 nmol/m3, with little variation throughout the year and
no clear seasonal trend. Overall, because of the low contribution of SO4

2�
anth, the seasonal variation of sul-

fate concentration at Baring Head is mainly controlled by the variation of SO4
2�

DMS.

However, uncertainties exist in our source appointment because (1) the sampling intervals were ~1month for
the marine collector and 1 week for the ambient collector, thus the marine collector could not record the
accurate δ34SDMS end-member; (2) the atmospheric chemistry of sulfate formation in the urban areas and
the open ocean was different because of the differences in NOx, volatile organic carbon, and O3 concentra-
tions, hence the isotopic fractionation between SO2 and sulfate may be different (Harris et al., 2012); and (3)
the δ34S of anthropogenic sulfate could display a wider range (Calhoun et al., 1991; Norman et al., 1999;
Wadleigh, 2004). Nevertheless, these uncertainties would not significantly impact our calculation.

4. Conclusion

We investigated the source distribution and seasonal variations of size-aggregated sulfate aerosols on a
coastal site at Baring Head, New Zealand from marine and ambient collectors. We suggested that using total
[Na+] or [Mg2+] instead of purely ionic [Mg2+] to estimate the sea-salt sulfate concentration could exclude the
error caused by high Na in filter blanks and Mg complexes in sea-salt aerosols. In our samples, coarse aerosol
sulfate was dominated by SO4

2�
SS, the variation of which was mainly determined by a combination of wind

speed and wave height; fine aerosol sulfate was dominated by SO4
2�

NSS. Therefore, the sulfate in the oceanic
CCN was mainly controlled by SO4

2�
NSS.

δ34SNSS in both collectors provided a direct observation of the relative importance of SO4
2�

DMS and SO4
2�

anth

in the midlatitude Southern Ocean. The SO4
2�

NSS in marine collector was primarily (88–100%) of DMS origin.
The concentrations of SO4

2�
DMS showed significant seasonal variation, which allow us to attribute the observed

high summer CCN level in the Southern Ocean troposphere to the elevated DMS emission. The ambient
SO4

2�
NSS displayed a lower and wider range of δ34S values, indicating a mixture between SO4

2�
DMS and

SO4
2�

anth with the average anthropogenic contribution range between 21 and 27%. Our observations sug-
gested a much lower SO4

2�
anth background in the Southern Hemisphere than in the Northern Hemisphere.
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